Geometry of Aerial Photographs

Definitions

Photo Coordinate

System

Defined by the

 fiducials in a film camera.(x) axis is in direction of flight

By D. Kamal M. Ahmed

Focal length (F)

Photo Coordinates (film)

- We use positives for ease of geometry and familiarity of feature shapes, negatives may be used in certain applications
- Lines connecting middle fiducials ON THE POSITIVE define a photo coordinate system, in which x is in the direction of flight, A RIGHT-HAND coordinate system
- Measurements can be as accurate as 1 micron = 1/1000 mm

Photo Cooedinates (Digital) (x, y) and (r, c)

- In a digital image, we measure rows and column locations (r, c).
- In a digital camera, the relationship between pixel locations in (r, c) and photo (x, y) at center is defined within the camera, no need for additional transformation
- In a film camera, the relationship is between photo fiducials (x, y) and ground (X, Y).
- When we scan a photo taken by a film camera, it becomes in a digital format, we measure ($r, c \mathrm{c}$. In this case, we need to transform (r, c) that we measure to (x, y) photo coordinates to apply the equations.
- A two-dimensional coordinate transformation from (r, c) to (x, y) is needed if the camera is not digital.

Geometry of aerial cameras

- Identify the following:
- Photo Coordinate System(right-handed)
- L: perspective center.
- Fiducial Center F.C.: intersection of (x), and (y) axis as defined by the fiducials (in a film camera).
- Principal Point (P.P) or O: the point where the perpendicular from the perspective center intersects the photograph. Usually deviates from the F.C by a very small distance.
- Principal axis: the line perpendicular from the principal center on the plane of the photograph (negative).
- f : the focal length, equals the Principal Distance.

Geometry of Vertical Photographs

- Define: image coordinate system (right handed), principal point, exposure station.
- If a film is used, measurements could be done using negatives or diapositives, same geometry, referred to the fiducials
- In digital images, row and columns of pixels define a coordinate system

and

Geometry of aerial cameras

Figure 3.8 Geometry of vertical photographs.

Geometry of a digital frame camera

- Similar geometry is assumed in case of a digital camera
- Uses a two-dimensional array of CCD elements mounted at the focal plane of the camera.
- The image is a grid of picture elements (pixels)

Vertical Photographs

Single Photo Applications Scale

Scale of a Vertical Photograph

- Scale of a photograph is the ratio of a distance on a photo to the same distance on the ground.
- Differences between photographs and maps:
- Projection: orthogonal or prospective
- Scale constant on maps, but varies on photos. The closer the object to the camera (higher), the bigger it looks.

(a, b, c)

Orthophoto maps

- geometrically corrected images, can be used as maps.
- The shift in image is proportional to the relief " height" of location in a photo.
- A DTM is needed to correct "rectify" the image so that images are
 displaced to their corresponding location on maps.

Orthophoto from a drone

Orthophotos and True Orthophotos

- Orthophotos are corrected for relief of topography, top of tall structures are still shifted.
- True orthophotos are produced from multiple images to eliminate the displacement of the top of tall objects.

Orthophoto of Washington, DC

Orthophoto of the UW

- Scale of a photograph is the ratio of a distance on a photo to the same distance on the ground.

Earth surface
Earth surface distance

The scale of a vertical photograph approximately equals to the ratio of the flying height above the ground and the focal lencatbsafthe fanmebatanfat (f) terrain)

$$
\text { Scale }=\frac{\text { imageDist }}{\text { surfaceDist }}=\frac{f}{н-h}
$$

h: ground elevation

- Scale of a vertical photo of flat horizontal ground is:

$$
\mathrm{S}=f /(\mathrm{H}-h)
$$

Aerial photograph taken at 460 m above ground, scale 1: 3,000

Aerial photograph taken at 910 m above ground, scale 1: 6,000

Aerial photograph taken at 1830 m above ground, scale 1: 12,000

Note that all the photos are of the same area.

Aerial photograph taken at 3660 m above ground, scale 1: 24,000

Example

A vertical aerial جويهphotograph is taken over flat terrain ارض with a 152.4 mm-focal-length camera from an altitude ارتفاع of 1830 m above ground. What is the photo scale?

- Answer:
$\mathrm{S}=152.4 \mathrm{~mm} / 1830 \mathrm{~m}$
$=0.1524 \mathrm{~m} / 1830 \mathrm{~m}=$
1: 12,000

Scale of a vertical photograph over variable terrain

But, ground is not always flat and horizontal. H in that case, elevation of ground, is variable, how do we define a scale??

Scale of a Vertical Photograph

- Definitions:
f : focal length of the camera H : flying hight above datum (MSL?) h: flying height above ground
- Scale (s) at any point:

$$
\mathrm{S}=\frac{f}{\mathrm{H}-\mathrm{h}}
$$

$$
\mathrm{S}_{\text {avg }}=\frac{f}{\mathrm{H}-\mathrm{h}_{\text {avg }}}
$$

- If f, H, and h are not available, but a map is available then:

$$
\text { Photo Scale }=\frac{\text { photo distance }}{\text { map distance }} \times \text { map scale }
$$

Example

Suppose that highest terrain h_{1}, average terrain $h_{\text {avg }}$, and lowest terrain h_{2} of Fig. 6-3 are 610, 460, and 310 m above mean sea level, respectively. Calculate the maximum scale, minimum scale, and average scale if the flying height above mean sea level is 3000 m and the camera focal length is 152.4 mm .

Answer:

Example

On a vertical photograph the length of an airport runway measures 160 mm . On a map that is plotted at a scale of 1:24,000, the runway is measured as 103 mm . What is the scale of the photograph at runway elevation?

Answer

Vertical Photographs

Single Photo Applications
Local Ground Coordinates

Ground Coordinates from a Single Vertical Photograph

- With a local image coordinate system defined, we define an arbitrary ground coordinate system.
- That ground system could be used to compute distances and azimuths. Coordinates can also be transformed to any system

Figure 27-8 Ground coordinates from a vertical photograph.

- In that ground system:

$$
\begin{aligned}
& X_{a}=x_{a} *(\text { photograph scale at a) } \\
& Y_{a}=y_{a} *(\text { photograph scale at } a)
\end{aligned}
$$

Figure 27-8 Ground coordinates from a vertical photograph.

Example (consider answering on your own)

A vertical photograph was taken with a camera having a focal length of 152.3 mm . Ground points A and B have elevations 437.4 m and 445.3 m above sea level, respectively, and the horizontal length of line $A B$ is 584.9 m . The images of A and B appear at a and b, and their measured photo coordinates are $\mathrm{xa}=18.21 \mathrm{~mm}$, ya $=-61.32 \mathrm{~mm}, \mathrm{xb}=109.65$ mm , and $\mathrm{yb}=-21.21 \mathrm{~mm}$. Calculate the flying height of the photograph above sea level.

Answer:

Vertical Photographs

Single Photo Applications Relief displacement

Relief

displacement

Towers A and B are equally high, but placed at different distances from the nadir point, thus have different relief displacements. A tower, depicted beneath nadir point has no relief displacement

Relief displacement from Nadir (enlarged)

Relief Displacement on a Vertical Photograph الاز احه بسبب الارتفاع

The shift of an image from its location as caused by the object's relief. Two points on a vertical line will appear as one line on a map, but two points, usually, on a photograph. الاز احه لنقطه علي الصوره من مكانها بسبب
الارتفاع

- In a vertical photo, the displacement is from the principal point.

Example of geometry

- Relief displacement (d) of a point with respect to a point on the datum :

$$
d=\frac{r h}{H}
$$

where:
r : is the radial distance on the photo to the high point
h : elevation of the high point, and H is flying height above datum

- Assuming that the datum is at the bottom of vertical object, H is the
flying height above ground, the value h will compute the object height.

Also:

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{c}} / \mathrm{R}=\mathrm{f} /\left\{(\mathrm{H}-\mathrm{h})-\mathrm{ht} \mathrm{c}_{\mathrm{c}}\right\} \\
& \Rightarrow \mathrm{r}_{\mathrm{c}} *\left\{(\mathrm{H}-\mathrm{h})-\mathrm{ht} \mathrm{t}_{\mathrm{c}}\right\}= \\
& \mathrm{R} * \mathrm{f}--(3)
\end{aligned}
$$

From (2) and (3):

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{c}} *(\mathrm{H}-\mathrm{h})-\left(\mathrm{r}_{\mathrm{c}} * \mathrm{ht}_{\mathrm{c}}\right)= \\
& \mathrm{r}_{\mathrm{b}} *(\mathrm{H}-\mathrm{h}) \text { then; }
\end{aligned}
$$

$$
\left(r_{c}-r_{b}\right) *(H-h)=r_{c} h t_{c}
$$

$$
\mathrm{d}=\mathrm{r}_{\mathrm{c}}-\mathrm{r}_{\mathrm{b}}=\mathrm{r}_{\mathrm{c}} * \mathrm{ht}_{\mathrm{c}} /(\mathrm{H}-\mathrm{h})
$$

In general:

Assume that point C is vertically above B , they are shown on the photograph as (c) and (b).
Measured radial distances from the center to points c and b $\left(r_{c}\right.$ and $\left.r_{b}\right)$, then

$$
\begin{aligned}
& d_{c}=r_{c}-r_{b} \quad \text { and; } \\
& d_{c}=\left(\begin{array}{ll}
r_{c} & *
\end{array} h_{c}\right) /\left(\text { flying height above ground }=H-h_{b}\right)
\end{aligned}
$$

Note that relief displacement is eliminated in true ortho photos

Example:

A vertical photograph taken from an elevation of 535 m above mean sea level (MSL) contains an image of a tall vertical radio tower. The elevation at the base of the tower is 259 m above MSL. The relief displacement d of the tower was measured as 54.1 mm . What is the height of the tower?

Answer:

Vertical Photographs

Single Photo Applications Flying Height

Flying Height of a Vertical Photograph

- Flying height can be determined by:
- Readings on the photos
- Applying scale equation, if scale can be computed
- Example: what is the flying height above datum if $f=6$ ", average elevation of ground is 900 ft , scale is $1^{\prime \prime}: 100 \mathrm{ft}$? Is it 1500^{\prime} ?
- Or, if two control points appear in the photograph, solve the equation:

$$
L^{2}=\left(X_{B}-X_{A}\right) 2+\left(Y_{B}-Y_{A}\right)^{2}
$$

then solve the same equation again replacing the ground coordinates with the photo coordinates. Get the scale.

Ground Coordinates from a Single Vertical Photograph

- With image coordinate system defined, we may define an arbitrary ground coordinate system parallel to (x, y) origin at nadir.
- That ground system could be used to compute distances and azimuths. Coordinates can also be transformed to any system
- In that ground system:

$$
\begin{aligned}
& X_{a}=x_{a} *(\text { photograph scale at } a) \\
& Y_{a}=y_{a} *(\text { photograph scale at } a)
\end{aligned}
$$

Figure 27-8 Ground coordinates from a vertical photograph.

Tilted Photographs

Tilted Photographs

Basic elements of a tilted photographs

- The optical axis is tilted from the vertical
- Identify the following:
- $t=$ angle of tilt between the plumb line and the optical axis LO
- $i=$ the isocenter: the line bisecting the tilt angle intersects the principal line in the isocenter.
- no $=$ the principal line joining the nadir point (n) and the principal point (0).

- Lno = the principal plane: it is the vertical plane containing o, L and n (shaped plane).
- im = axis of tilt: it is the line perpendicular to the principal line from the isocenter i in the plane of the photograph.
- $\mathrm{S}=$ the swing angle: it is the angle measured from the positive photographic y-axis clockwise to the principal line (on).
- x'y' axes are the auxiliary coordinate system of the tilted photograph where:
$\mathrm{y}^{\prime} \quad$ is the principal line (no).
$\mathrm{x}^{\prime} \quad$ is the perpendicular to y^{\prime} from point n.
$\theta=$ the rotation angle between y and y^{\prime} axes in a counterclockwise direction.

Figure (3-6) Basic elements of tilted photograph

What and why an auxiliary coordinate system?

- A step to relate photo coordinates to ground, because the photograph is tilted.
- Thus, photo and ground coordinates are not parallel any more.
- You need a system in between as a step to transfer photo coordinates to ground, specially that tilt is variable.

Relationship between Photo and Auxiliary coordinate system

$$
\begin{aligned}
& x_{a}^{\prime}=x_{a} \cos \theta-y_{a} \sin \theta \\
& y_{a}^{\prime}=x_{a} \sin \theta+y_{a} \cos \theta+f \tan t
\end{aligned}
$$

Scale of a tilted Photograph

The tilt of a photograph occurs around the axis of tilt in the direction of the principal line.

Scale of a tilted Photograph

- Scale = horizontal distance on the photo / horizontal distance on the ground =

$$
\text { ka' } / \text { KA' = Lk / LK }
$$

Also,

$\mathrm{LK}=\mathrm{H}-\mathrm{h}_{\mathrm{A}}$

$=$ flying height above ground
Then:

Scale of a tilted photograph $\mathrm{S}_{\mathrm{A}}=f(\sec t)-y^{\prime} \sin t /\left(\mathrm{H}-\mathrm{h}_{\mathrm{A}}\right)$

Example

Example 3-1:

A tilted Photo is taken with a 6 inch focal length camera from a flying meight of 8200 feet Tilt and swing angles are $3^{\circ} 30^{\circ}$ and 218° respectively. Point (A) has an elevation of 1435 feet and its image coordinates are $\mathbf{x a}=-285$ inch. ya 3.43 inch . What is the scale at point (a) ?

Solution
$\theta=$

Ground Coordinates from a tilted photograph

- Coordinates of point A in a ground coordinate system X^{\prime}, Y^{\prime} where:
- X^{\prime}, Y^{\prime} are parallel to x^{\prime} and y^{\prime} (auxiliary system)
- Ground Nadir N is the origin of the ground system
- Note that in the auxiliary coordinate system, lines parallel to x^{\prime} are horizontal, thus x^{\prime} on the photo is horizontal and directly related to ground X by the scale, or

$$
X_{A}^{\prime}=x^{\prime} / S_{A}
$$

- But in the auxiliary system, y^{\prime} is in the direction of maximum tilt and not horizontal, the scale is ratio between horizontal projections.
- Ka: Horizontal projection of $y^{\prime}=y^{\prime} \cos t$
- Then,
- $Y^{\prime}=y^{\prime} \cos t / S$

Example

Example 3-1:

A tilted Photo is taken with a 6 inch focal length camera from a flying meight of 8200 feet Tilt and swing angles are $3^{\circ} 30^{\circ}$ and 218° respectively. Point (A) has an elevation of 1435 feet and its image coordinates are $\mathbf{x a}=-285$ inch. ya 3.43 inch. What is the scale at point (a)?
If the image coordinates of another point (b) are $\mathrm{xb}=3.09$ inch, yb 1.78 inch. and the elevation of (B) is 1587 feet calculate ground coordinates of (A) and (B).

Relief Displacement of a Tilted Photograph

- Displacement of elevated points occurs from the nadir point n "intersection of vertical with the photo".
- Since the tilt is small, the nadir n is close to the P. P. or o
- The error can be ignored:
- Displacement is measured from o and the same equation applies.
- When will you NOT ignore that error????

Tilt Displacement

- Important to learn since it provides basic knowledge needed for rectification.
- Rectification is the process of making equivalent vertical photographs from tilted photo
- An equivalent vertical photo is a photograph taken from the same exposure station L while the optical axis is vertical, with the same camera of focal length f
- For the geometry to be correct, the photograph should be tilted around the isoline, or the axis of tilt through i, why??

Figure (3-9) Tilt displacement in the principal plane of a tilted photograph

- Tilt displacement $\left(d_{t}\right)$ is the distance by which the image of a point on a vertical photograph is shifted as the image is tilted.
- Assume that point B on the ground appears on the vertical photograph at point a' at a radial distance $\mathrm{r}_{\mathrm{ia}^{\prime}}$ from the isoceneter. as the photograph is tilted, point A now appears at a on the tilted photograph at a distance $r_{i a}$ from the isocenter i.
- The tilt displacement of $\mathrm{a}=\mathrm{r}_{\mathrm{ia}}-\mathrm{r}_{\mathrm{ia} a^{\prime}}$
- Tilt displacement (from vertical to tilted photo) is inward (ve) if the point is below the isoline such as a, and is outward (+ve) if the point is above the isoline such as b.
- Digital images can easily be rectified by shifting each pixel by $\left(d_{t}\right)$ at a radial distance from the isocenter.
- Tilt displacement is calculated by the following equation:

$$
d_{t}=\frac{\left(r_{i}\right)^{2} \sin t \cos \lambda}{f-\left(r_{i}\right) \sin t \cos \lambda}
$$

where:
dt is the amount of tilt displacement.
r_{i} is the radial distance from the isocenter to the image point.
and $\lambda \quad$ is the angle in the plane of photograph between the principal
line (no) and the radial line r_{i}

